Snapshot inversion recovery: an optimized single-shot T1-weighted inversion-recovery sequence for improved fetal brain anatomic delineation.
نویسندگان
چکیده
PURPOSE To prospectively evaluate the clinical effectiveness of snapshot inversion recovery (SNAPIR), which is a dedicated optimized inversion-recovery-prepared single-shot fast spin-echo T1-weighted sequence, in the delineation of normal fetal brain anatomy compared with that of the currently used T1-weighted gradient-echo protocol, which often yields images of poor quality due to motion artifacts and inadequate contrast. MATERIALS AND METHODS This study was approved by the hospital research ethics committee, and informed written consent was obtained from all patients. Forty-one fetuses were examined at 19-37 weeks gestation (mean, 29 weeks gestation) by using both the standard T1-weighted protocol and the optimized T1-weighted SNAPIR protocol with a 1.5-T imager. Two independent blinded observers performed qualitative analysis, evaluating overall diagnostic quality, detailed anatomic delineation, and severity of motion artifacts. Quantitative analysis comprised calculation of contrast ratios (CRs) for the cortical gray matter, subplate, white matter, and cerebrospinal fluid. The Wilcoxon signed rank test was used to compare image rating scores, the paired t test was used to compare CRs, and κ statistics were used to test interobserver agreement. RESULTS Both overall diagnostic quality (P < .001) and detailed anatomic delineation (P < .001) were enhanced with SNAPIR compared with the standard T1-weighted acquisition. Also, motion artifacts were less severe (P = .008) and less extensive (P < .001) with SNAPIR. Corresponding CRs were increased with SNAPIR in seven of eight examined regions. CONCLUSION SNAPIR is a promising robust alternative to the current T1-weighted acquisitions; its role in the detection of disease requires further study.
منابع مشابه
The effect of inversion times on the minimum signal intensity of the contrast agent concentration using inversion recovery t1-weighted fast imaging sequence
Background :Inversion recovery (IR) pulse sequences can generate T1-weighted images with a different range of inversion time (TI) to suppress or null the signal intensity (SI) for a specified tissue. In this study, we aimed to investigate the effect of TI values on the concentration of the contrast agent, which leads to a minimum signal intensity, using an inversion recovery T1-weighted 3-dim...
متن کاملSnapshot Inversion Recovery (snapir): a Robust, Optimised T1-weighted Fetal Brain Mri Protocol for Improved Anatomy Delineation
Background: T2-weighted single-shot fast spin-echo (SS FSE) sequences are the mainstay tool for fetal brain MRI, generating high contrast images even in the presence of fetal and maternal motion (1). Fetal T1-weighted gradient (field) echo breath-hold acquisitions, useful to confirm normal anatomy and pathology, lack the quality of their T2-weighted counterparts, mainly due to artefacts from ma...
متن کاملEffect of iron oxide nanoparticles coating type on the relationship between nanoparticles concentration and signal intensity in inver-sion recovery T1-weighted MRI
Background: Ultrasmallsuperparamagnetic iron oxide (USPIO) nanoparticles are used as blood pool contrast agent for magnetic resonance angiography and perfusion imaging. Our aim in this study was to investigate the effect of the two coating types of iron oxide nanoparticles on the relationship between nanoparticles concentration and signal intensity (SI) in T1-weighted MR images. Methods : D...
متن کاملMost commonly used sequences and clinical protocols for brain and spine magnetic resonance imaging allowing better identification of pathological changes in dogs.
Magnetic resonance imaging is the best imaging modality for the brain and spine. Quality of the received images depends on many technical factors. The most significant factors are: positioning the patient, proper coil selection, selection of appropriate sequences and image planes. The present contrast between different tissues provides an opportunity to diagnose various lesions. In many clinics...
متن کاملMR of the spine with a fast T1-weighted fluid-attenuated inversion recovery sequence.
PURPOSE To optimize a T1-weighted fast fluid-attenuated inversion recovery (FLAIR) sequence using computer-simulated data and to study its clinical utility for imaging the spine. METHODS Relative signal intensities and contrast of relevant normal and pathologic tissues in the spine were computed using an inversion recovery equation modified to account for a hybrid RARE (rapid acquisition with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Radiology
دوره 258 1 شماره
صفحات -
تاریخ انتشار 2011